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Abstract

Self-supervised learning (SSL) faces a funda-
mental conflict between semantic understanding
and image reconstruction. High-level semantic
SSL (e.g., DINO) relies on global tokens that
are forced to be location-invariant for augmenta-
tion alignment, a process that inherently discards
the spatial coordinates required for reconstruction.
Conversely, generative SSL (e.g., MAE) preserves
dense feature grids for reconstruction but fails to
produce high-level abstractions. We introduce
STELLAR, a framework that resolves this ten-
sion by factorizing visual features into a low-rank
product of semantic concepts and their spatial dis-
tributions. This disentanglement allows us to per-
form DINO-style augmentation alignment on the
semantic tokens while maintaining the precise spa-
tial mapping in the localization matrix necessary
for pixel-level reconstruction. We demonstrate
that as few as 16 sparse tokens under this factor-
ized form are sufficient to simultaneously support
high-quality reconstruction (2.60 FID) and match
the semantic performance of dense backbones
(79.10% ImageNet accuracy). Our results high-
light STELLAR as a versatile sparse representa-
tion that bridges the gap between discriminative
and generative vision by strategically separating
semantic identity from spatial geometry. Code
available at https://aka.ms/stellar.

1. Introduction

Learning visual representations has been a central pursuit in
computer vision since the advent of deep learning (Bengio
et al., 2013). Modern vision models encode raw pixels into
latent features powering nearly all downstream applications.
Despite advances from early convolutional networks (Le-
cun et al., 1998) to ResNets (He et al., 2016) and vision
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transformers (ViTs) (Dosovitskiy et al., 2020), the geomet-
ric format of visual representation has remained largely
unchanged: a dense 2D grid of high-dimensional features,
where each vector is tied to a local patch. This design is
intuitive, as it mirrors the grid-like arrangement of pixels.

On the other hand, the field faces a longstanding dilemma:
the pursuit of a unified, holistic representation that excels
at both high-level semantic understanding and low-level re-
construction. While this synthesis has succeeded in natural
language processing, where reconstruction tasks like bidirec-
tional masking (BERT (Devlin et al., 2019)) or autoregres-
sive modeling (GPT (Brown et al., 2020)) naturally induce
superior semantics, it doesn’t directly transfer to the vision
domain. Representations learned primarily through image
reconstruction (e.g., MAE (He et al., 2022), SimMIM (Xie
et al., 2022)) often yield semantics that trail behind contem-
porary state-of-the-art methods. Consequently, recent self-
supervised learning (SSL) approaches have largely diverged
into two camps: those prioritizing pixel-level grounding
via reconstruction, and those prioritizing rich semantics via
joint-embedding invariance (Van Assel et al., 2025).

We argue that this divergence stems from an Invariance
Paradox inherent to the dense grid format. For a dense repre-
sentation to faithfully reconstruct an image, it must preserve
precise spatial information which are inherently equivariant
to transformations like cropping or shifting. Conversely,
high-level semantics are invariant to such transformations.
Traditional SSL methods such as DINO (Caron et al., 2021)
attempt to force invariance onto global representations ob-
tained from these dense grids. This creates a fundamental
conflict: the model is pressured to discard spatial variance
to achieve semantic alignment, yet the dense grid format
requires equivariance for spatial grounding.

In this work, we show that this paradox is not an inevitable
trade-off, but a byproduct of the dense representation it-
self. By moving away from the 2D grid towards a sparse,
factorized latent representation, we can jointly achieve high-
fidelity reconstruction and rich semantics. Our key insight
is that the information necessary to describe a scene can be
disentangled into two complementary, sparse factors:

1. The “What”: A set of sparse latent tokens representing
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invariant visual concepts.

2. The “Where”: A set of equivariant coefficients repre-
senting their spatial locations.

By disentangling these factors through a low-rank matrix
factorization form, we enable a “semantic triage”: the model
is forced to reconstruct the entire image using a highly
compressed bottleneck. This encourages the model to ignore
stochastically redundant background pixels and focus on
semantically-rich object regions. We propose STELLAR, a
framework that achieves high-quality reconstruction from
as few as 16 tokens while encoding fine-grained semantics
in a fully self-supervised manner.

Our contributions are summarized as follows:

* Sparse Representation: We propose STELLAR, an
efficient form of vision modeling that factorizes an
image into a handful of sparse tokens by disentangling
what concepts are present from where they are located.

* SSL Method: We introduce a training scheme to learn
these representations without annotation. By aligning
visual concepts across views using optimal transport,
we enforce invariance in the “what” factor while adapt-
ing the “where” factor, inducing rich semantics.

¢ Empirical Observations: (i) STELLAR achieves a
state-of-the-art balance of semantics (IN-1K linear acc.
79.10%) and reconstruction (FID 2.60), outperform-
ing prior approaches. (ii) Our sparse image model-
ing induces fine-grained, region-aware semantics even
without explicit dense supervision, outperforming prior
work with similar training budget.

2. Related Work

Self-supervised Learning. Modern SSL generally falls
into two paradigms. Joint Embedding (JE) methods, such
as the MoCo (He et al., 2020) and DINO (Oquab et al.,
2023) families, prioritize global invariance via multi-view
alignment, yielding strong semantics but often losing spatial
grounding. Conversely, Masked Image Modeling (MIM),
exemplified by MAE (He et al., 2022) and SimMIM (Xie
et al., 2022), emphasizes spatial equivariance through pixel
reconstruction. While hybrids like iBOT (Zhou et al., 2021)
and DINOvV2 (Oquab et al., 2023) attempt to combine these
objectives, they still rely heavily on global invariance and
forgo pixel reconstruction.

Sparse Representation. A growing body of work replaces
dense feature maps with compact embeddings. Sparse R-
CNN (Sun et al., 2021) and Mask2Former (Cheng et al.,
2022) utilize sparse queries for supervised tasks, while

BLIP-2 (Li et al., 2023) and TiTok (Yu et al., 2024) em-
ploy sparse tokens for vision—language or generative effi-
ciency. SemMAE (Li et al., 2022) utilizes sparse tokens
to guide masking using a pretrained teacher. Unlike these
methods, STELLAR treats sparse tokens as the primary
latent representation and learns in SSL manner.

Disentanglement & Low-rank Factorization. The as-
sumption that high-dimensional data lie on low-dimensional
manifolds is foundational to dictionary learning (Mairal
et al., 2008). In deep learning, low-rank constraints are
typically applied to weights for efficiency (e.g., LoORA (Hu
et al., 2022)). STELLAR differs by applying low-rank fac-
torization to the feature map itself, disentangling “what”
(semantic latents L) from “where” (spatial assignments S).

The Empirical Dilemma. Current vision frameworks face
a persistent gap: models excelling at pixel-level reconstruc-
tion often produce weaker semantic representations (Zhang
etal.,2022; Chen et al., 2024), while those achieving top-tier
semantics often abandon reconstruction to avoid low-level
shortcuts (Assran et al., 2023; Darcet et al., 2025). We
demonstrate that by factorizing the latent representation, it
is possible to achieve strong performance on both image
understanding and reconstruction.

3. Preliminaries

Representation learning involves encoding an image X € X
to latent features Z (X)) for downstream tasks. Traditionally,
vision representations take a dense spatial form:

7Zc RnXd,

where n = h x w denotes the number of patches on a
dense grid that partitions the image. Each grid location
is represented by a feature vector z; = Z;. € R? for
1 <% < n. Most vision architectures also incorporate a
global representation zo € R?, typically obtained via global
pooling or a specialized [CLS] token that undergoes self-
attention with patch tokens.

Ideally, we want Z to serve as a holistic representation of
the image X, which retains sufficient information about
the image details, while at the same time possesses rich
semantics for downstream tasks. Mathematically, we define
such representation as follows:

* Reconstruction: There exists a decoder D such that
D(Z(X)) ~ X. This ensures the representation is
spatially and texturally grounded in the physical input.

¢ Semantics: For a downstream task with joint distribu-
tion (X,Y) ~ X x ), there exists a simple predictor
f € F (e.g., a linear layer) such that the expected
task loss E(x vy [L(f(Z(X)),Y)] is minimized using
frozen features. Typically Y reflects human perception.
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Current SSL paradigms are caught in a fundamental “Invari-
ance Paradox”. In order to learn high-level semantics, Joint
Embedding (JE) methods (e.g. the DINO family) impose
invariance to spatial transformations, even when the image
is cropped to as small as only 5%. On the other hand, recon-
struction requires spatial detail, because every pixel shift
requires a different set of features for precise reconstruction.
This results in representations which are highly equivariant
to the transformation, i.e. the feature map transforms along
with the transformation in the image.

Let T be a group of spatial transformations (e.g., transla-
tions), and ty € T is parametrized by 6 i. A representation
Z (X)) suffers from the Invariance Paradox if it must simul-
taneously satisfy two contradictory constraints:

* Semantic Invariance: The representation should be
insensitive to tg € T:

0
H%Z(tg o X)||F =~ 0.

» Spatial Equivariance: To allow for high-fidelity re-
construction, the representation must track spatial
shifts: D(Z(tg o X)) =~ tg o X. With chain rule
and matrix norm inequalities, we have

’8(tgoX) H
90 ||

0
Z(tgo X)llr 2

H% > 0.

Omax (92)

4. The STELLAR Framework
4.1. Sparse Image Modeling

From now on we consider a form of representation in al-
ternative to the dense grid-based representations describing
what appears at each individual location. We start from the
principle that an image depicts the physical world, which
can be understood as a collection of objects located in space.

To begin with, we model an image with a compact set of
semantic concepts together with their spatial distributions.
Let there be r concept embeddings s1, - - - , s, € RY, where
each s; captures a distinct semantic concept. The spatial
distribution of these concepts is expressed through weights
ly,---,1, € R", where n is the total number of patches.

By constraining 0 < I; < 1 and 1'71; = 1, each patch is
represented as a convex combination of the concept embed-
dings: v; = Z;Zl l; js;. Thus, the set s;”_, acts as a basis
for constructing local features. In matrix form, the latent
representation now takes the form

Z(X) = L(X)S(X), (1
where S = [s1,...,s,]" € R"™is the semantic matrix,

and L = [ly,...,1,]T € R"™ " is the localization matrix,
with the constraint 0 < L < 1,L1, = 1,,.
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Figure 1. Comparison of learning different latent representation.

Compared to a canonical dense representation of shape n xd,
Z = LS can be considered as a form of low-rank matrix
approximation from the sparse representation. While the
form resembles the low-rank structure used in convex semi-
nonnegative matrix factorization (Ding et al., 2008), .S and
L are not obtained from any matrix factorization algorithm,
but are instead direct output from the forward pass of the
encoder, allowing end-to-end training using SSL objectives.

4.2. Equivariant Partitioning

The factorized form in equation 1 not only provides a more
efficient latent representation (r(n + d) < nd. With 16
tokens, ViT-base on a 224 x 224 image enjoys 90% reduc-
tion), it also provides an escape from the invariance paradox.
The spatial transformation is now partitioned as follows:

BZ(ggeo X) _ <6L(z;960 X)) SiL <85(1290 X)>.

Total Equivariance Spatial Equivariance Semantic Variancex0

(@)

With the spatial and semantic information disentangled, we
can offload the spatial equivariance entirely to localization
matrix L, while still achieving semantic invariance in S.
We illustrate the learning paradigm of the factorized repre-
sentation in Fig. 1. We require that Z (X ) can reconstruct
the image by minimizing

ﬁrecon = Z(D(L(X)S(X))’X) (3)

This low-rank approximated reconstruction forces the
model to use only sparse tokens {s; }53:1 to capture suf-
ficient information about the image.

4.3. Vision Concept Clustering

To encourage sparse tokens to represent transferable vision
concepts, we structure them into K learnable prototypes
c1, -+ ,cxg € RP. A backbone encoder £ maps a mini-
batch of m images into sparse features S, --- , §™. Each
token is projected onto the unit sphere SP~! via a normalized
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projector h : R? — SP~!, and its similarity to prototypes
C =lecy, - ,ck] gives logits

)\; — [cl~h(8§),~-- ,cK~h(s§)], i=1,...,r. @

Soft assignments over the prototypes is obtained with

= exp()\j-vk/T)
,',k - K ’L )
! Dok=1 eXp()‘j,k’/T)

where 7 controls sharpness. Direct entropy minimization of
q;- is unstable due to non-convexity and empty clusters. Fol-
lowing (Caron et al., 2020; Darcet et al., 2025), we compute
balanced assignments c'j; from q; using the Sinkhorn-Knopp
algorithm (see appendix) without gradient, and minimize

&)

m s

K
Lclusler = _i Z Z Z Q;,k 1Og q;‘,k' (6)

i=1j=1k=1

Unlike DINOv2 and SwAV which only use Sinkhorn for
balancing teacher targets, we explicitly minimize Lcjyseer
along with all other objectives.

4.4. Set Concepts Alignment

To achieve the semantic invariance in equation 2, we align
the sparse tokens s/, ..., s!. obtained from a transformed
view (e.g. masking or cropping) to the ones from the global
view s1, ..., s,. However, this set concepts alignment prob-
lem is challenging compared to global representation align-
ment in traditional JE methods, because there is no inherent
ordering in the r tokens. To solve the problem, we apply
optimal transport with the cost matrix

Qi = |Isj — sjll2- (7

We solve for an assignment matrix P via entropy-
regularized optimal transport:

min D POy~ cH(P), @®)
VARV
1
st. Pl,=PT1,=-1,, 9)
T
with H(P) = —>_j',jPj;log Pj;. We solve for P

using the Sinkhorn algorithm, and define the matching
o(j') = argmax;Pj;. Compared to bipartite matching
algorithms such Hungarian matching widely used in pre-
vious literature, this algorithm is up to 100x faster, with
experimental results analyzed in the appendix.

We then compute prototype assignments for the transformed
view tokens ¢j, = softmax(C”h(s/,)/7), and minimize
the set concept alignment loss

r K
1 -
Ealign = 7; E E do(5'),k IOg q;'/,k' (10)

j'=1k=1

Optionally, we use the same framework to cluster and align
the CLS token with its own projector and prototypes, sim-
ilar to previous JE methods. However, we do not used
it for reconstruction. We also apply KoLeo regulariza-
tion (Sablayrolles et al., 2018) on the normalized sparse
tokens §; := s;/||s;| obtained from the same image to
encourage concept diversification:

1< 1
LKoLeo = —;;bg <§p£ 5185 = ij||2> .oan

All together, we jointly optimize the following objectives
by training the encoder &, decoder D, projector h, and
prototypes C jointly with the final objective:

min

a1 L + as Ll ~+ a3 Lajion+ 12
£D.h,C 14~recon 2 &cluster 34~align ( )

aaLotuster-cls + a5 Ealign—cls + a6 LxKoLeo- (13)

In summary, we proposed a sparse vision representation
(S, L) = £(X) that explicitly disentangles semantic con-
cepts from their spatial distributions, enabling the latent
variables to support both pixel-level reconstruction and high-
level semantic understanding. We introduced a simple en-
coder design to obtain these latent variables and SSL objec-
tives to shape them into transferable visual concepts.

We refer to our framework of learning the spatial-
semantic factorized representation Z (X ) = L(X)S(X) as
Sparse Token Extraction and Localization with Low-rank
Approximated Reconstruction (STELLAR).

4.5. Model Design

We note that the framework only specifies the latent space,
and does not prescribe any specific encoder or decoder ar-
chitecture. In this work, we adopt a simple design with
common modules and model architectures to obtain .S and
L as described below.

For the encoder part, we use an existing ViT(Dosovitskiy
et al., 2020) as the backbone, and equip it with r learnable
latent query vectors, which are passed to the transformer
blocks alongside the patch tokens. Processed by the ViT
jointly, the latent queries produce sparse tokens S € R"*<.

To obtain the localization matrix L € R™*" associated with
the sparse tokens, we use the dense feature map U € Rnxd
output from the image patches. We project both S and U
into a shared embedding space and compute their pairwise
cosine similarities, followed by a softmax normalization
with temperature Typaia along the the second dimension:

L = softmax (cossim(U Wy, SW2) / Tpaial) - (14)

W, and W, are learnable linear projections, and Tpagal cON-
trols the sharpness of the spatial distribution. We note that
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Figure 2. Analysis of STELLAR representation. (a) Relative matrix difference in L and S under controled pixel shift in the input
image. (b) Cosine distance of latent representation under random 50-100% random cropping. (c) Impact of number of sparse tokens r on

reconstruciton and semantic quality.

his mapping is structurally similar to the attention weights
obtained in a single-head cross-attention layer, up to the use
of L2 normalization and an explicit temperature parame-
ter. Therefore, the latent representation Z = L.S can be
viewed as rebuilding a dense feature map for reconstruction
by cross-attending to only r sparse concept tokens.

All together, the encoder £ includes ViT transformer blocks,
r learnable latent query vectors, and projection layers
W1, W,. The decoder D is a 6-layer lightweight ViT re-
constructing the image patches.

The STELLAR framework can be used on a pretrained ViT
such as MAE or DINO to leverage the foundation prior
and shape it into a sparse holistic representation. It can
also be trained from a random prior and reach competitive
spatial, semantic, and reconstruction quality. We provide
deep analysis in the ablation study.

5. Experiments

We train STELLAR on ImageNet-1K (Deng et al., 2009)
without labels. The encoder is a vanilla ViT (Dosovitskiy
et al., 2020) augmented with 8-24 learnable latent queries
that produce sparse tokens. A lightweight 6-layer ViT
serves as the decoder predicting either MaskGIT-VQGAN
tokens (Esser et al., 2021; Chang et al., 2022). When using
a foundation prior for the backbone ViT, we ensure that
the pretraining was also performed only on ImageNet-1K.
We use MAE as the default prior and studied the effect of
different prior modes in ablation study. When training from
random prior, we use a momentum updated encoder to en-
code the target assignments ¢ in equation 6 and equation 10,
following Grill et al.; Caron et al..

5.1. Probing the Factorized Representation

We designed a series of experiments to analyzed the factor-
ized representation Z = L.S from STELLAR training.

Experiment 1: Equivariant Partitioning We built a con-
trollable and parametrized spatial transformation group to
examine the equivariant partitioning in equation 2. Given
an image, we take a crop and shift it gradually from 5
to 30 pixel, either horizontally or vertically. We calcu-
lated the relative matrix difference 15(eeX)—SXlr onq

[Ejeels
W. Optimal tsansport in equation 8 is used

to match the token ordering. As shown in Fig. 2(a), the
semantic matrix S stays almost completely invariant, while
the spatial localization matrix L changes continuously with
the spatial shift, proving the effectiveness of equivariant
partitioning in the factorized representation.

Experiment 2: Transformation Robustness Next we
compare the semantic stability of STELLAR representation
with baseline models under random resized cropping at
scale 50-100%. We calculate the cosine distance from the
feature of the untransformed image as a measure of semantic
instability. For DINO and MAE, we used mean-pooled
dense features, and for sparse models STELLAR and TiTok,
we used mean-pooled sparse tokens. As shown in Fig. 2(b),
the sparse tokens of STELLAR enjoys high transformation
robustness at DINO level. As expected, the reconstruction-
based models MAE and TiTok show higher variance to
spatial transformation. Specifically, the un-factorized sparse
representation from TiTok is extremely unstable, as the
model need to store both semantic and spatial information
in the same sparse tokens for reconstruction.

Experiment 3: Effect of Low-rank Bottleneck The num-
ber of sparse tokens r serves as the intrinsic rank of the latent
representation. We experimented scaling r from 8 to 24,
and evaluated reconstruction with FID (Heusel et al., 2017)
and semantics with linear probing on mean-pooled sparse
tokens. As shown in Fig. 2(c), the linear probing accuracy
decreases as r increases, while reconstruction improves with
more tokens, showing a trade-off in the intrinsic rank of the
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Figure 3. Vision concepts retrieved from the training set. We show show both the image and the spatial localization of the concept.

representation. As a sweet spot, r = 16 enjoys both rich
semantics and high-quality reconstruction, which we used
as the default for all other experiments.

Finally, we visualize the factorized representation in Fig. 3.
We show the spatial localization (thresholded by 1/r) of a
sparse token in the image, and the top retrieved semantic
concepts from the training dataset.

5.2. Evaluating Holistic Representation

Next we examine the semantic quality and reconstruction po-
tential of representation from different models. We trained
the same decoder in STELLAR on top of the frozen features
from different encoders. The original decoder in STELLAR
was also finetuned with the rest of the model frozen. TiTok
used it’s native decoder, which is a full-sized ViT compared
to only 6 layers in STELLAR.

As shown in Table 1, STELLAR (shown as ours) shows
superior performance in supporting both semantics and re-
construction. The linear probing and k-NN accuracy of
STELLAR surpass reconstruction-feasible representations
from all baselines, despite trailing behind the CLS token
from DINO, which is infeasible as a reconstruction latent.

On reconstruction, STELLAR shows comparable FID and
LPIPS loss (Zhang et al., 2018) to the dense feature map
from MAE, with 90% reduction in latent size. Although
TiTok achieved lower FID with a much larger decoder, its
shows highest LPIPS loss, indicating poor spatial consis-
tency. In contrast, STELLAR exhibits superior reconstruc-
tion locality even with fewer tokens. The full-rank dense
feature map U (196 tokens) from the ViT in STELLAR
shows even lower reconstruction FID, while drops in se-
mantic quality. Finally, when scaling to huge-sized ViT,
STELLAR achieves top reconstruction and semantic qual-
ity, even without decoder finetuning.

Table 1. Reconstruction and semantic metrics on IN1K of STEL-
LAR (ours) and baseline models. For reference, we also reported
semantic metrics of the global representation from DINO, and
huge size STELLAR model. Best main results are shown in bold.
Model sizes are ViT-B by default, with larger sizes indicated in
parentheses. *: TiTok used its native ViT decoder of larger size.

RECONSTRUCTION  SEMANTICS
MoODEL  #7TKS | FID] LPIPS| | LIN. KNN
DINO 1 - - 76.46  74.69
DINO 196 3.27 0.2121 70.31 54.41
MAE 196 3.02 0.2071 66.32 25.82
TiTok* 32 2.75 0.3281 3342  17.30
TiTok* 64 1.99 0.2571 32.87 7.29
OURS 16 3.06 0.2077 73.26 67.25
OURS 196 2.85 0.2085 72.21  64.71
OURS(H) 16 2.60 0.1729 79.10 77.31

5.3. Benchmarking Image Understanding

Lastly, we benchmark STELLAR in classical image under-
standing tasks with linear probing on frozen features, com-
paring against other ImageNet-pretrained SSL models. We
report results for classification on ImageNet-1K (IN1K),
Oxford-IIIT Pet (Pets) (Parkhi et al., 2012), Food-101
(Food) (Bossard et al., 2014), and GlaS (Sirinukunwattana
et al., 2016) for cancer grade classification in histopathol-
ogy. Segmentation benchmarks include ADE20K (Zhou
et al., 2017b), Cityscapes (Cordts et al., 2016), and Pas-
cal VOC (Everingham et al., 2010). For broader con-
text, we also include AIM (El-Nouby et al., 2024) and DI-
NOv2 (Oquab et al., 2023), which leverage substantially
larger training corpora (100—1000x more images).

As shown in Table 2, the feature map from STELLAR
achieves superior performance on ADE20K and Pascal
VOC, showing strong fine-grained understanding despite
not applying SSL objectives directly to the dense feature
map U. Sparse token modeling implicitly organizes the
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Table 2. Evaluation of Fine-grained and Global Image Understanding. We evaluate semantic segmentation (mloU %) and classification
accuracy (%) via linear probing on frozen features. We used the dense feature map from the backbone for all segmentation tasks and all
models. Bold: best with ImageNet training. Underline: best in architectural class (e.g., ViT-B).

SSL Type Segmentation (mIoU) Classification (Acc)
Model Arch. Target Method ADE20K CitySc VOC | INIK  Pets Food GlaS
Semantic-Centric (Joint Embedding / Invariance)
BYOL RN-50 GLOBAL DISTILL 18.43 18.66 63.89 | 70.39 82.77 64.57 95.00
MoCo v3 VIT-B GLOBAL CONTR. 29.45 25.13 74.08 | 74.31 91.14 77.47 97.50
DINO VIT-B GLOBAL DISTILL 26.87 26.82 79.29 | 76.46 93.84 79.28 95.00
MSN VIT-B GLOBAL  MASKING 26.66 25.39 68.59 | 73.65 7591 68.93 92.50
DENSECL RN-50 DENSE CONTR. 23.08 18.63 7095 | 61.10 72.99 59.16 85.00
DATA2VEC VIT-B DENSE LAT-MIM 22.03 23.49 61.33 | 54.90 26.47 34.40 73.75
SIAMESEIM  VIT-B DENSE LAaT-MIM 29.24 26.52 81.38 | 7497 91.61 71.01 91.25
I-JEPA VIT-H DENSE LAaT-MIM 21.57 18.59 74.13 | 71.72 84.68 70.34 87.50
1IBOT VIT-B GL+DE  DisT+MIM 31.78 25.69 77.06 | 76.40 92.40 78.08 96.25
IBOT VIT-L GL+DE  DisT+MIM 33.26 26.37 77.57 | 78.53 92.12 81.07 96.25
Image-Centric (Reconstruction)
BEIT VIT-B DENSE Toxk MIM 11.58 18.90 27.44 | 32.94 36.20 54.49 90.00
BEIT VIT-L DENSE Toxk MIM 12.64 20.37 25.48 | 36.77 36.71 56.03 90.00
SIMMIM SWIN-B DENSE Pix MIM 12.46 17.23  35.14 | 2477 27.39 4094 77.50
MAE VIT-B DENSE Pix MIM 30.91 29.44 76.43 | 66.32 81.58 70.40 93.75
MAE VIT-L DENSE Pix MIM 34.36 32.53  77.79 | 73.09 84.30 76.22 95.00
MAE VIT-H DENSE Pix MIM 36.16 3521  78.07 | 75.22 84.96 78.36 95.00
SEMMAE VIT-B DENSE Pix MIM 3.52 25.48 48.33 | 43.84 56.99 58.90 92.50
TITOK-64 VIT-B SPARSE SPRS REC - - - 32.87 42.06 43.68 97.50
TITOK-32 VIT-L SPARSE SPRS REC - - - 33.42 27.83 38.83 78.75
Our Method (Sparse Factorized Modeling)
STELLAR VIT-B SPARSE INV+REC 31.33 27.74 81.83 | 73.26 89.70 74.09 95.00
STELLAR VIT-L SPARSE INV+REC 34.02 31.32 85.90 | 76.94 92.53 74.78 97.50
STELLAR VIT-H SPARSE INV+REC 36.66 33.30 85.66 | 79.10 92.53 77.43 92.50
Larger Scale Pretraining Beyond ImageNet (Reference Only)
AIM 600 M DENSE IMAGE AR 29.00 27.04 64.55 | 63.78 64.68 75.19 98.75
AIM 1B DENSE IMAGE AR 29.59 27.05 6390 | 66.86 64.21 77.96 96.25
DINOV2 VIT-B* GL+DE  DisT+MIM 40.10 34.66 89.52 | 82.82 95.59 91.08 98.75
DINOvV2 VIT-L* GL+DE  DisT+MIM 40.45 32.07 89.19 | 84.23 96.08 92.94 98.75

feature map into semantic regions: to reconstruct the image,
each token must encode information covering all spatial
parts of the scene, resulting in region-aware representations.
While MAE leads in CityScapes, STELLAR follows closed
with performance comparable to MAE and DINOv2.

On global image understanding tasks, STELLAR achieves
the highest accuracy on IN1K at large model scale, but
smaller variants underperform methods such as DINO,
which explicitly optimizes for global representations. In
general, STELLAR outperforms image reconstruction mod-
els and most JE methods, but trails behind top JE models
in global semantics. As we do not model the image as a
single concept, averaging token features can dilute discrim-
inative information, which is particularly detrimental on
object-centric datasets like Pets and Food. Interestingly, on
histopathology images involving complex tissue microenvi-
ronments, STELLAR achieves the best performance. These
results indicate that STELLAR excels at modeling complex,
multi-object scenes, while global classification on simple
object-centric datasets remains more challenging.

5.4. Ablation Analysis

Low-rank approximated reconstruction. As shown in
Table 3, removing the low-rank reconstruction objective (A)
reduces both global and fine-grained understanding. Since
the remaining objectives resemble typical SSL methods,
the model still retains reasonable global performance, but
fine-grained understanding suffers more. This indicates that
low-rank reconstruction encourages sparse tokens to serve
as holistic representations covering the entire image.

Concept clustering. Eliminating online clustering and set
alignment (B) leads to a sharp drop in understanding, high-
lighting the necessity of structuring sparse tokens into view-
invariant concepts. Even when the alignment loss is present
(D), missing the clustering loss still lead to feature collapse.

Set alignment. The training collapsed when training with
only reconstruction and clustering (C), underscoring the
critical role of set concepts alignment. Additional alignment
on the CLS token (E) primarily benefits global classification
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Table 3. Ablation. We isolate the impact of each objective on semantic abstraction (IN1K) and spatial grounding (ADE20K), and
reconstruction (FID). Default denotes the full STELLAR framework. All results are based on ViT-B.

Recon. Cluster Set Align CLS Align  KoLeo | rFID | INIK 1 ADE 1t
DEFAULT v v v v v o 3.14 73.26 31.33
Impact of Individual Components
(A) X v v v v — 72.44 (-0.82) 29.94 (-1.39)
(B) v X X X v 3.21 (+0.07) 52.07 (-21.19) 20.46 (-10.87)
(©) v v X X v 8.95 (+5.81) 2.73 (-70.53) 1.93 (-29.39)
(D) v X v v v 3.62 (+0.48) 42.14 (-31.12) 18.90(-12.43)
(E) v v v X v 3.26 (+0.12) 70.79 (-2.47) 30.20 (-1.12)
(F) v v v v X 3.25 (+0.11) 72.05 (-1.21) 30.10 (-1.23)

but has limited effect on spatial grounding. Finally, KoLeo
regularization (F) consistently improves all tasks at similar
level. Interestingly, the absent of either concept clustering
or set alignment led to a sharp drop in performance.

Foundational Prior We ablated STELLAR trained from
different pretrained foundational prior in Table 4. We ob-
serves that STELLAR significantly boost the semantic qual-
ity from MAE, and the spatial grounding from DINO prior.
The semantics performance falls to similar level despite
different foundational priors. When training from random
prior, STELLAR is able to reach semantics at MAE level
and spatial understanding similar to that from DINO prior.
The reconstruction quality stays consistent in all cases.

Table 4. Evaluating STELLAR trained from different foundational
priors. Base represents the performance of the original backbone.

Recon Semantic (IN1K) Spatial (ADE20K)
Prior | FID | | BASE +STELLAR | BASsE +STELLAR
MAE | 3.14 | 66.32 73.26 (+6.9) | 30.91 31.33 (+0.4)
DINO | 3.31 | 76.46 73.31(-3.2)|26.87 28.17 (+1.3)
RAND \ 3.21 \ - 65.28 \ - 28.10

6. Discussion and Concluding Remarks

We have demonstrated that the long-standing trade-off be-
tween semantic abstraction and spatial grounding (the In-
variance Paradox) is largely an artifact of the traditional
dense-grid representation. By factorizing the latent space
into sparse “What” and “Where” components, STELLAR
effectively resolves this conflict.

The core of STELLAR’s success lies in the principle of
semantic triage. In a dense model (e.g., MAE), the repre-
sentation is spatially exhaustive but semantically diluted;
the model is forced to allocate representational capacity to
every patch, including stochastically redundant background
noise.

The low-rank factorization provides the mathematical ma-

chinery to disentangle two distinct types of visual infor-
mation. The Concept Tokens (S) are trained to be view-
invariant, capturing the categorical “What,” while the Spa-
tial Coefficients (L)) remain equivariant, capturing the geo-
metric “Where.”

This disentanglement allows the model to satisfy the Joint
Embedding objective (alignment across views) without de-
stroying the spatial anchors needed for high-fidelity recon-
struction. By separating these factors, we avoid the “seman-
tic blurring” often seen in global-pooling methods, as each
sparse token maintains a precise, albeit flexible, relationship
with the physical image geometry.

The Path to Unified Multimodality: Perhaps the most
promising frontier for STELLAR is its potential as a visual
front-end for Large Language Models (LLMs). Because
our tokens are sparse and semantically grounded, they offer
a more natural interface for cross-modal alignment than
the hundreds of dense tokens generated by standard ViTs.
Future work will investigate the systematic integration of
STELLAR concepts with linguistic embeddings for more
interpretable multimodal understanding.

Overall, our results highlight sparse tokens as a promising
direction for unifying efficiency, interpretability, and seman-
tic richness in self-supervised representation learning.

Impact Statement

This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Implementation Details
A.1. STELLAR Training

We trained STELLAR with ViT models at size base, large, and huge, along with the latent queries, projection layers,
clustering head, and a 6-layer ViT decoder. In the default setting, we initialized the ViT part in the encoder from public MAE
checkpoint, and trained for 150 epochs for STELLAR-B, 100 epochs for STELLAR-L, and 50 epochs for STELLAR-H.
We used 16 NVIDIA A100-80GB with batch size 128 each, totaling 2048. We used AdamW (Loshchilov, 2017) with base
learning rate 1.5 x 10~ for STELLAR-B, and 5 x 10~ for STELLAR-L and STELLAR-H.

For concept clustering, we used 16384 prototypes for sparse and CLS tokens each. The projector is a 2-layer MLP before the
prototype layer. We used 3 steps of Sinkhon-Knopp algorithm. The temperature in sparse-dense cosine similarity softmax
is 0.06. We used 6-8 random masked views to align the sparse tokens, and additional 6-8 local crops to align the CLS
token. Global views are of random scale 36% to 100%, and local view are of random scale 6% to 36%. We also apply color
jittering, grascaling and Gaussian blurring.

In the ablation study of random prior, we trained the model from scratch and used exponential moving average (EMA)
updated momentum encoder to encode the target prototype assignments in the warm-up stage. We EMA updated the full
encoder (ViT, latent queries, projection, clustering head with momentum 0.996. The momentum encoder was used to encode
a global view of the image into target prototype assignments, for both clustering loss and alignment loss. The masking ratio
was 0.6 in the warm-up stage, and 0.8 during standard training. We trained the model with 150 epochs of EMA warm-up
and 75 epochs of standard training.

A.2. Evaluation Protocol

For STELLAR and all baseline models, we evaluated the frozen feature from the pretrained model with linear probing. We
used layer norm in classification tasks, and batch norm in segmentation tasks, followed by a single linear layer predicting the
class of the image or patch. For all benchmarks, we split 10% from the training set for validation. We tuned hyper-parameter
with learning rate 1 x 107°,2 x 107°,5 x 107°,1 x 1074,2 x 1074,5 x 1074,1 x 1073,2 x 1073,5 x 1073,1 x 1072,
and batch size 64, 128, 256, 512, 1024, 2048, 4096, 8192.

As the SSL methods varies across different baseline models, for classification tasks we used the mean-pooled feature from
the representations where the corresponding SSL method was performed, e.g. the global CLS token for DINO, and dense
patch tokens for MAE. We noticed the linear probing accuracy can vary depending on the pooling choice, and conducted
experiments by using different types of tokens for each model, with results in Table 5. We observed that the SSL-ed are
typically the best choice for linear probing, except for iBOT, which highly relies on the global CLS token for classification,
even though the model was trained with MIM. In contrast, STELLAR and MAE are relatively more robust to token choices.

Table 5. ImageNet-1K linear probing accuracy (%) by pooling different tokens. We mark in bold the tokens on which the specific SSL
method was applied, and the top accuracy for each method.

DINO MAE iBOT STELLAR (ours)
tokens | global dense | global dense | global dense gl.+de. | sparse  dense
lin. acc. | 76.46 7031 | 65.61 6632 | 76.40 71.44 71.58 | 73.26 72.21

B. Additional Results

B.1. Effect of pretraining data

We pretrained separate STELLAR versions on ImageNet-1K, Places365 (Zhou et al., 2017a) and compared their linear
probing performance in Table 7.

B.2. Semantics from different features

We conducted linear probing of different mean-pooled features of different types, and compared in Table 8. Sparse feature
showed strongest global understanding quality.
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Figure 4. The STELLAR framework. We use a vanilla ViT to extract sparse tokens from an image, and model the latent representation as
a low-rank matrix factorization, ensuring reconstruction of the original image. Clustering loss and set alignment loss are applied on the
disentangled sparse tokens.

B.3. Concept alignment with language

Inspired by (Zhang et al., 2025), we used frozen feature from STELLAR and aligned with the text tower of CLIP (Radford
et al., 2021) with a single attention pooled probing layer. The evaluation on vision language tasks with comparison to
baseline models are shown in Table 9.

B.4. Finetuning

We performed finetuning for STELLAR on ImageNet-1K classification and ADE20K segmentation, and compared with
baseline models. We used the same evaluation protocol as in Sec. A.2, with the backbone unfrozen and finetuned for
75 epochs. We used ViT-B for all models. The finetuning results are shown in Table 11. STELLAR showed consistent
performance gain across different tasks, and close to the top model iBOT with slight difference.

B.5. Efficiency analysis

To analyze the efficiency of the STELLAR framework, we printed the processing time of the main components in the
STELLAR framework with one A100 GPU at different batch sizes. Encoding the main global view of the image takes up
most of the processing time, followed by encoding the masked views (8 views at 80% masking ratio) and decoding to the
original image. The Sinkhorn-Knopp algorithm used for clustering and the Sinkhorn algorithm used in optimal transport
matching take up much less amount of time, and their total processing time stay at similar level when increasing the batch
size.

In comparison to the Sinkhorn matching algorithm we used in our experiments, we show the processing time using an
alternative Hungarian matching algorithm commonly used in previous literature such as Sparse R-CNN (Sun et al., 2021),
DETR (Carion et al., 2020) and MaskFormer (Cheng et al., 2021). As the implementation of the exact matching is not
scalable with GPU parallelization, it’s computational time increases linearly with the batch size. At batch size 64, it is
already 6 times of the encoder processing, while the Sinkhorn algorithm is over 100 times faster. For this reason, we added a
small entropy regularization term in the bipartite matching objective, allowing us to use the Sinkhorn algorithm for efficient
matching with GPU parallelization.

C. Additional Illustration
See Fig. 4 and 5.
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Figure 5. Left: Concept clustering and alignment workflow. Right: visualization of learned representation.

Table 6. List of baseline models and SSL method type.

Model Reference Method SSL space  SSL tokens
BYOL (Grill et al., 2020) augmentation alignment latent global
MoCo v3 (Chen et al., 2021) contrastive learning latent global
DINO (Caron et al., 2021) augmentation alignment latent global
MSN (Assran et al., 2022) masked alignment latent global
DenseCL (Wang et al., 2021) contrastive learning latent dense
Data2Vec (Baevski et al., 2022) latent MIM latent dense
SiameseIM  (Tao et al., 2023) latent MIM latent dense
IJEPA (Assran et al., 2023) latent MIM latent dense
iBOT (Zhou et al., 2021) align + latent MIM latent global+dense
BEIT (Bao et al., 2021) token MIM image dense
SimMIM (Xie et al., 2022) pixel MIM image dense
MAE (He et al., 2022) pixel MIM image dense
SemMAE  (Lietal., 2022) pixel MIM image dense
TiTok (Yuetal., 2024) reconstruction + clustering image sparse
AIM (EI-Nouby et al., 2024) autoregressive image dense
DINOv2 (Oquab et al., 2023) align + latent MIM latent global+dense

Table 7. Effect of pretraining data.

linear probing acc.

Pretraining data | ImageNet-1K  Places 365

ImageNet-1K 76.94 49.25
Places365 66.08 51.98

Table 8. Semantics in different features

Feature \ sparse cls dense
IN-1K lin. acc (%) \ 73.26 7223 7221
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Table 9. Language alignment evaluation.

IN-1K 0-shot MS COCO Winoground ~ MMVP
@1 @5 T2I 2T Text Image Avg.
MAE 23.18 50.43 | 11.28 13.46 | 20.75 9.00 19.26
iBOT 50.01 80.43 | 20.79 2938 | 24.75 12.00 18.52
STELLAR | 51.53 80.04 | 17.94 2234 | 26.25 8.25 19.26
CLIP 72.7 - 43.0 59.7 | 305 11.5 20.0

Table 10. Finetuning performance in ImageNet-1K classification accuracy and ADE20K segmentation mIOU (%). We show in parentheses

the gain over the respective linear probing results.

Model ImageNet-1K Acc. ADE20K mIOU
DINO 79.58 (+3.12) 39.22 (+12.35)
MAE 77.75 (+11.43) 40.33 (+9.42)
iBOT 80.72 (+9.14) 42.76 (+10.97)
STELLAR 80.05 (+6.78) 41.98 (+10.65)

Table 11. Processing time (s) of the main components in the STELLAR framework with one A100 GPU at different batch sizes. In
comparison to the Sinkhorn matching algorithm we used in our experiments, we show the processing time using an alternative Hungarian

matching algorithm commonly used in previous literature (shown in gray).

Batch size 4 8 16 32 64
Encoder 82x107° 9.1x10° 14x102 20x10°% 32x107?
Decoder 46x 1072 6.8 x107% 88 x107% 12x1072? 1.5x1072

Mask encoding 7.9x107% 89 x107% 1.1 x1072 1.8x107%2 1.7 x1072
SK clustering 34x107% 34 x107* 34x107* 3.7x107* 39x1074
Sinkhorn matching | 1.4 x 1073 1.4 x1073 1.4 x1073 1.4 x107% 1.2 x1073
Hungarian matching | 5.7 x 1072 1.7 x1072 4.0 x107? 9.0 x10~2 1.8 x10~!
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